
1

Communication Studies of DMP and SMP Machines

Andrew Sohn
Dept. of Computer and Information Science

New Jersey Institute of Technology, Newark, NJ 07102-1982
sohn@cis.njit.edu

Rupak Biswas
MRJ Technology Solutions, Mail Stop T27A-1

NASA Ames Research Center, Moffett Field, CA 94035-1000
rbiswas@nas.nasa.gov

Abstract

Understanding the interplay between machines and problems is key to obtaining high performance on parallel

machines. This paper investigates the interplay between programming paradigms and communication capa-

bilities of parallel machines. In particular, we explicate the communication capabilities of the IBM SP-2

distributed-memory multiprocessor and the SGI PowerCHALLENGEarray symmetric multiprocessor. Two

benchmark problems of bitonic sorting and Fast Fourier Transform are selected for experiments. Communi-

cation-efficient algorithms are developed to exploit the overlapping capabilities of the machines. Programs

are written in Message-Passing Interface for portability and identical codes are used for both machines. Var-

ious data sizes and message sizes are used to test the machines’ communication capabilities. Experimental

results indicate that the communication performance of the multiprocessors are consistent with the size of

messages. The SP-2 is sensitive to message size but yields a much higher communication overlapping be-

cause of the communication co-processor. The PowerCHALLENGEarray is not highly sensitive to message

size and yields a low communication overlapping. Bitonic sorting yields lower performance compared to FFT

due to a smaller computation-to-communication ratio.

2

1 Introduction

Programming parallel machines involves numerous practical concerns. The problems under consideration need to be

carefully studied to identify potential parallelism. Suitable algorithms for the problems need to be developed to man-

ifest their potential parallelism. Programming must be done in a way to effectively realize the algorithms and harness

their parallelism for the target machines. Each machine’s special capabilities, if any, should be utilized to improve the

performance. The programmer must have a good understanding of the characteristics of the problem as well as of the

underlying machine architecture. Programmability that refers to the easiness of programming parallel machines is one

of the keys to success. It is particularly important for problems requiring complex synchronization and parallelization.

Functional languages have been used to overcome the difficulties in programming multiprocessors. They are dif-

ferent from programs written in imperative languages in that they do not require explicit parallel constructs such as

message-passing or synchronization primitives. The programmer need not understand the low level implementation

details of the machine architecture, data distribution, synchronization, and so on. Instead, one can concentrate on al-

gorithmic improvement or the quality of solutions. The non-strict functional language Id [16] has been ported to the

Monsoon data-flow multiprocessor [18], and demonstrated that functional languages can be an alternative to parallel

programming. The strict functional language Sisal [14] and its optimizing compiler OSC [5] demonstrated that func-

tional languages can yield high performance on shared-memory machines [7].

However, the performance of functional languages on distributed-memory machines is yet to be determined. High

Performance Fortran (HPF) aims at providing programmability for distributed-memory multiprocessors [9]. Data par-

allelism in large arrays are a typical target parallelism used in HPF [11,12]. A simple description of data distribution

such as blocked or cyclic can help keep programmers away from the low-level details of data distribution and commu-

nication issues. Programmers instead concentrate on the algorithmic issues of the problem under consideration.

Analyzing the behavior of the program, data can be partitioned and allocated to processors such that runtime data

movement can be minimized.

One of the key issues behind these approaches are to minimize communication and synchronization times. Large-

scale machines distribute data in a way that there is no overlapping or copying of major data. Typical distributed-mem-

ory machines incur a lot of latency, ranging from a fewµs to tens ofµs for a single remote read operation. The SP-2,

for example, requires about 40µs to read data allocated to remote processors. Considering that the microprocessors

are running at 66.7 MHz (15 ns cycle time) for the SP-2 590 model, the loss due to a single remote read operation is

enormous: more than 2600 cycles. Several models developed to capture the communication behavior include BSP

[22], LogP [6], and LogGP [2]. The LogP model defines four parameters:L for latency,o for overhead,g for gap be-

tween messages, andP for processors. Each of the four parameters is designed to capture a certain aspect of

communication behavior for short messages. The LogGP model extends the LogP model by addingG to capture the

communication behavior of long messages, whereG is the gap between bytes of the same message.

Multithreading aims at tolerating remote memory latency through split-phase read mechanism and context switch-

ing [19,8,10,13,17]. Threads are usually delimited by remote read instructions which may incur long latency if the

requested data is located in a remote processor [17]. Through a split-phase read mechanism, a processor switches to

another thread instead of waiting for the requested data to arrive, thereby masking the detrimental effect of latency.

The Monsoon dataflow machine switches context every instruction, where a thread consists of a single instruction [18].

The Tera multithreaded architecture (MTA) provides hardware support for multithreading [3]. The maximum of 128

threads are provided per processor. Context switch takes place whenever a remote load or synchronizing load is en-

3

countered. Experimental results indicated that multithreading can help lessen the impact caused by the mismatch of

data distribution to workload distribution [20].

In this paper, we investigate the interplay between programming paradigms and communication capabilities of

parallel machines. In particular, we explicate the communication capabilities of the IBM SP-2 distributed-memory

multiprocessor [1,21] and the SGI Power CHALLENGEarray symmetric multiprocessor. We fix the programming

paradigm to Message Passing Interface (MPI) [15] to show programmability and to identify how performance changes

at the expense of programmability. We first give a brief description of the two machines in Section 2. Section 3 ex-

plains how two benchmark problems (bitonic sorting and fast fourier transform) are modified to fit the requirements

of our communication studies. Section 4 gives an overview of the experimental results and presents several key obser-

vations. Sections 5 to 7 elaborate on the communication efficiency across problems, machines, message sizes, and

number of processors.

2 Two Multiprocessor Machines

2.1 IBM SP-2

The SP-2 is developed at IBM Scalable Power Parallel Systems [1,21]. Processors are POWER2 architecture which is

a six-instruction issue superscalar machine running at 66.7 MHz. The six instructions consist of two branch-related

instructions, two fixed-point instructions, and two floating-point instructions. There are two types of nodes: thin nodes

and wide nodes. The main differences between thin and wide nodes are their memory and disk capacities. Thin nodes

have up to 512 MB of main memory, 4 GB disk, and four micro channels. Wide nodes come with up to 2 GB of main

memory, 8 GB disk, and eight micro channels. The processors used in the experiments reported in this paper are all

based on wide nodes. The nodes are connected through a high performance switch, called the Vulcan chip. Each chip

connects up to eight processors. Eight Vulcan switching chips comprise a switching board. Figure 1 shows one switch

board where eight Vulcan chips connect 32 processors. Figure 2 shows the SP-2 communication adaptor. The adaptor

consisting of a 4KB FIFO and an Intel i860 processor that is designed to take the burden of communication-related

activities off the main processor.

By introducing a communication co-processor, the main processor can perform computations while the commu-

nication processor handles the task of sending/receiving messages to/from other processors. The bidirectional FIFO

highlighted in Fig. 2 is central to overlapping communication and computation. The buffer can hold up to 4KB of data

Figure 1: An SP-2 with 32 processors connected through a switch board of eight Vulcan switches.

switch3

switch2

switch1

switch0

switch7

switch6

switch5

switch4

P
ro

ce
ss

or
s

0
to

 1
5

Switch board

P
ro

ce
ss

or
s

16
 to

 3
1

4

for two directions or 2KB for each direction. The i860 initiates the sending/receiving of messages. As we shall dem-

onstrate later, this 4KB of FIFO plays a central role in providing the capability of overlapping computation with

communication. Other components in the adaptor help realize this overlapping.

2.2 SGI Power CHALLENGEarray

The SGI Power CHALLENGEarray (PCArray) located at NASA Ames Research Center is a cluster containing four

Power Challenge nodes. There are a few other nodes, but they were not used for this work. Figure 3 shows the PCArray

consisting of four nodes. Each node is a shared-memory single-address space multiprocessor with 2 GB of main mem-

ory. Four nodes are connected through a 16x16 HiPPI switch. Each node has two HiPPI connections. Data transfer

between nodes are done with a special HiPPI driver that bypasses, but coexists with, IP traffic. HiPPI transfers can

achieve about 110µs latency and 92 MB/s bandwidth. Very large data transfers are striped across multiple HiPPI con-

nections, giving about 160 MB/s over two HiPPI connections.

Each nodes consists of eight MIPS R8000 processors running at 90 MHz with 4-issue superscalar capability. Each

processor has a peak floating point performance of 360 Mflops. A SGI optimized version of Message-Passing Interface

(MPI) is provided to handle communication between nodes. Within a single node, MPI transfers are done through a

single-copy mechanism, achieving 64 MB/s bandwidth and 18µs latency. There are other connections for communi-

cation between nodes and for file I/O including ATM, FDDI, Ethernet, SCSI, etc. However those connections are not

shown in Fig. 3 as they are not relevant for the work reported in the paper. The major difference between the PCArray

and the SP-2 is that the PCArray does not provide any special hardware for fast communication while the SP-2 has an

i860 communication co-processor. Hence, there is little possibility of overlapping communication with computation

for the PCArray.

Figure 2: The SP-2 communication adaptor for overlapping communication and computation.

M
ic

ro
 c

ha
nn

el

Micro channel

interface

Bidirectional

FIFO

4K Bytes

i860 XR
40 MHz

(MSMU)

DRAM

S
w

itc
h

lin
k

4MB

Memory-Switch
Managing Unit

Figure 3: A Power CHALLENGEarray of four nodes, each of which has eight MIPS R8000 processors.

Power Challenge
with 8 R8000s

SGI
Power Challenge

with 8 R8000s

SGI
Power Challenge

with 8 R8000s

SGI
Power Challenge

with 8 R8000s

SGI

16x16
HiPPI switch

5

3 Problem Descriptions

Two benchmark problems, bitonic sorting and FFT, are described in the context of overlapping computation and com-

munication. Bitonic sorting has moderate parallelism while FFT is highly parallel. To improve the performance of

bitonic sorting, we introduce a new communication-efficient algorithm that utilizes overlapping.

3.1 Overlapped Bitonic Sorting

Bitonic sorting introduced by Batcher [4] consists of two steps:local sortandmerge. Figure 4 illustrates bitonic sorting

of 32 elements on 8 processors, i.e.,n=32 andP=8. For example, consider processors 0 and 1 of bitonic generation

with i=0, j=0. P0 has local list (5,13,24,32) and P1 has local list (6,14,23,31) after the local sorting step. P0 and P1 will

sort eight elements in an ascending order as indicated by shaded circles. Hollow circles indicate processors that sort

elements in a descending order. A line between two processors indicates communication. P0 sends its local list to its

mate processor P1 while P1 sends its local list to its mate P0. Both P0 and P1 then merge the list received from their

respective mates with their local list. Since P0 has a smaller pid than P1, it takes the lower half (5,6,13,14) while P1

takes the higher half (23,24,31,32). This type of sending, receiving, and merging operations continues until the 32 el-

ements are sorted across the eight processors.

In Local sort Merge Out
i=0,j=0 i=1,j=1 i=1,j=0 i=2,j=2 i=2,j=1 i=2,j=0

Figure 4: Bitonic sorting of 32 elements on eight processors. Shaded circles indicate those processors performing
ascending order merge while hollow circles indicate processors performing descending order merge. Lines con-
necting two processors indicate communication to send/receive data.

5
24
32
13

5
13
24
32

5
6
13
14

5
6
13
14

5
6
7
8

5
6
7
8

5
6
7
8

31
14
23
6

6
14
23
31

23
24
31
32

7
8
15
16

13
14
15
16

13
14
15
16

22
15
7
30

30
22
15
7

30
29
22
21

21
22
29
30

21
22
23
24

9
10
11
12

8
16
21
29

29
21
16
8

16
15
8
7

23
24
31
32

29
30
31
32

1
2
3
4

28
9
20
1

1
9
20
28

1
2
9
10

26
25
18
17

28
27
26
25

25
26
27
28

2
10
27
19

2
10
19
27

19
20
27
28

28
27
20
19

20
19
18
17

17
18
19
20

18
11
3
26

26
18
11
3

26
25
18
17

10
9
2
1

12
11
10
9

21
22
23
24

4
12
17
25

25
17
12
4

12
11
4
3

12
11
4
3

4
3
2
1

29
30
31
32

9
10
11
12

1
2
3
4

13
14
15
16

25
26
27
28

21
22
23
24

17
18
19
20

29
30
31
32

25
26
27
28

21
22
23
24

17
18
19
20

29
30
31
32

5
6
7
8

9
10
11
12

1
2
3
4

13
14
15
16

2

0

3

1

6

7

4

5

4

5

0

1

6

7

2

3

4

5

0

1

6

7

2

3

6

7

4

5

0

1

2

3

2

0

3

1

6

7

4

5

6

7

4

5

0

1

2

3

6

7

4

5

0

1

2

3

6

An overlapped version of bitonic sorting divides a list intos segments, where each segment holdsm=n/sP ele-

ments. To handle these segments, ak-loop is introduced. Each iteration of thek-loop is responsible for mergingm

integers. The pseudo code in Figure 5 describes our overlapped version of bitonic sorting. The main idea of the over-

lapped version is to firstpost a reading of a segment for thenext iteration while computation takes place for thecurrent

iteration. Lines 5, 6, 9, and 10 are key to overlapping. Lines 5 and 6 post sending/receiving a segment ofm elements

for the veryfirst iteration of thek-loop. The postings are non-blocking operations which return as soon as the posting

is done. Upon entering thek-loop, another pair of send and receive commands form elements is posted for the next

iteration, i.e.,k=1, while the sending and receiving fork=0 is still outstanding. At this moment, two receives are pend-

ing for iterationsk=0 and 1. Thek-loop then reaches the checking stage in Line 12 and waits until the receive for the

k=0 iteration is completed. Until this point, there is no overlapping of computation with communication.

As soon as the waiting step of Line 12 returns, the computation for iterationk=0 commences by merging segment

0 of L2 into its own list L1, as shown in Line 13. Overlapping occurs at this time because computations fork=0 take

place while the receive fork=1 is either outstanding or taking place within a communication co-processor/bypassing

mechanism. By the time the merging is complete fork=0, it is expected that the communication fork=1 is completed

or near completion. This receiving (communication) for iterationk+1 and merging (computation) for iterationk take

place simultaneously, resulting in the overlap of computation with communication. If the computation time were larger

than the communication time, it would be possible to complete the communication for the next iteration. The ratio of

computation time to communication time is, therefore, one of the key parameters to determine the efficiency of over-

lapping. The find_mate_pid(pid) function in Line 4 is non-trivial. It computes the order in which segments are sent

and received and the order in which they are to be merged. However, the algorithm used is beyond the scope of this

paper and is irrelevant for our current objective of investigating communication capabilities of parallel machines.

3.2 Overlapped Fast Fourier Transform

The second problem used in this study is the Fast Fourier Transform (FFT). Figure 6 shows an implementation of FFT

with 16 elements on four processors. The 16 data elements are divided into four groups, each of which is then assigned

1 Local sort L1; /* L1 is my list, L2 is the mate’s list, L1=L2=n/P elements */

2 for (i=0; i<log P; i++) { /* P = number of processors */

3 for (j=i; j<=0; j++)

4 mpid = find_mate_pid(pid); /* mpid = mate processor number, pid = my processor number */

5 Post non-blocking send of segment 0 of L1 /* function returns after posting */

6 Post non-blocking recv of segment 0 of L1

7 for (k=0;k<s;k++) { /* n/P elements are split into s segments (messages) */

8 if (k < s−1) { /* nonblocking send/recv for the next k-th iteration */

9 Post non-blocking send of segment k+1 of L1

10 Post non-blocking recv of segment k+1 of L1

11 }

12 Wait until segment k of L2 arrives from mpid

13 Merge_sort segment k of L2 and L1 to L /* L=2n/P, a buffer to hold the merged result of L1 and L2 */

14 }

15 Take appropriate half of L depending on the values of pid and mpid

16 }

17 }

Figure 5: Pseudo code for overlapped bitonic sorting.

7

to a processor. Processor 0, or P0, has elements 0 to 3, P1 has elements 4 to 7, and so on. A FFT withn elements re-

quires logn iterations. The butterfly shown in Figure 6 thus requires four iterations. In the first iteration, each processor

obtains a copy of the four elements assigned to its mate processor. P0 finds P2 as its mate processor, from which ele-

ments 8 to 11 are received. Similarly, P1 obtains elements 12 to 15 from P3. P2 and P3 also obtain the data allocated

to P0 and P1, respectively. The second iteration is essentially the same as the first iteration, except that the logical com-

munication distance is halved. So, P0 remote receives from P1 this time the four elements which have beennewly

computed by P1 in iteration 0. Similarly, P1 obtains the newly computed four elements from P0. P2 and P3 perform

similar operations. The last two iterations do not need communication since the required data are stored locally on the

processors. In general, an FFT with blocked data distribution ofn elements onP processors requires communication

only for the first logP iterations. The remaining (logn) − (log P) iterations can be performed locally; thus, communi-

cation is not necessary.

Overlapping computation with communication for FFT is straightforward. Like bitonic sorting, the data assigned

to each processor is grouped into segments to control the granularity of communication. Unlike bitonic sorting, how-

ever, FFT possesses no data dependence between elements within an iteration. This feature allows computation to

commence wheneverany segment is received from the mate processor. The pseudo-code in Figure 7 illustrates how

overlapping is realized. Note that FFT needs logn iterations but the loop is for only the logP iterations that require

communication.

Within thei-loop is aj-loop which sends/receivess messages (or segments). The sizem of a segment is determined

asn/sP. Thisj-loop is not necessary if the entire data ofn/P elements is sent/received as a single message. Line 2 finds

a mate processor to send/receive data. Lines 3, 4, 7, and 8 are key to overlapping. Lines 3 and 4 post sending/receiving

Figure 6: FFT with 16 elements and four processors. Each processor is assigned four elements using blocked
data distribution. The first two iterations require communication while the remaining are local computations.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

P0

P1

P2

P3

iteration 0 iteration 1 iteration 2 iteration 3

8

commands ofm elements for the veryfirst iteration of thei-loop. Note that FFT requires two sends instead of one in

sorting. This is because every data element has a real and an imaginary part. Receiving is similar, posting two receives

for the real and imaginary parts. Upon entering thej-loop, another pair of sends and receives is issued for the nextj

iteration, i.e.,j=1, while sending and receiving forj=0 are still outstanding. At this moment, two pairs of sends and

receives are pending forj=0 and 1. The loop then waits (Line 10) until the two receives posted earlier completes. The

rest is similar to bitonic sorting, except that the computation is different.

4 Experiment Settings and Overall Results

The two benchmark problems, fine-grain bitonic sorting and FFT, have been implemented on two machines: an IBM

SP-2 and a SGI Power CHALLENGEarray. Both algorithms are written in C with MPI [15]. Since their implementa-

tions do not require a special environment, they are portable and can be run on any machine which supports MPI. To

measure the effectiveness of the overlapping capability, loops were forced to execute synchronously by inserting abar-

rier at the end of thej-loop for bitonic sorting (cf. Fig. 5) and thei-loop for FFT (cf. Fig. 7). While the problems do

not need to run synchronously, we did it only to obtain individual timings. The overall execution times will improve

if the barriers were removed. All other communication activities are done in a non-blocking fashion.

Measuring communication time is complicated. We timed MPI_Wait() and the non-blocking MPI_Isend() and

MPI_Irecv(). A large portion of the communication time comes from MPI_Wait(). The communication times include

remote memory latency, overhead for message preparation, and barrier synchronization times. Computation times are

measured indirectly by subtracting the communication time from the total time. It is likely that the computation times

include some interrupt times for message handling. Results presented in later sections show however that the compu-

tation times are fairly stable, indicating that the interrupt times are not a significant factor. All timings are the minimum

of several runs.

The terms elements and integers are used interchangeably throughout this paper, as are segments and messages.

The unit for sorting isintegers while that for FFT ispoints. An integer is 32 bits. A point consists of real and imaginary

parts, each of which is 32 bits. The following is a list of parameters that were used in this study:

• P = number of processors, up to 64 for SP2 and 32 (4 nodes) for PCArray

• n = total number of data elements, up to 64M

• s = number of segments per processor

• m = n/sP = message size, of number of data elements per segment

1 for (i=0; i<log P; i++) { /* P = number of processors */

2 mpid = find_mate_pid(pid); /* mpid = mate processor number, pid = my processor number */

3 Post two non-blocking sends of real and imaginary segment 0/* function returns after posting */

4 Post two non-blocking recvs of real and imaginary segment 0

5 for (j=0;j<s;j++) { /* n/P elements are split into s segments (messages) */

6 if (j < s−1) { /* nonblocking send/recv for the next j-th iteration */

7 Post two non-blocking sends of real and imaginary segment j+1

8 Post two non-blocking recvs of real and imaginary segment j+1

9 }

10 Wait until real and imaginary segment j arrives from mpid

11 /* Perform computation with segment j */

12 }

13 }

Figure 7: Pseudo code for overlapped FFT.

9

Communication times for the two test problems forP=8 and 32 and a range of data and segment sizes are plotted

in Figs. 8 and 9. The computation times are not included as they are essentially independent of the segment size. The

computation times for the two machines are not directly compared since they can be misleading due to different clocks

and superscalar capabilities. We use them only to show the ratio of computation time to communication time.

Several key observations can be made from the results shown in Figs. 8 and 9:

• The PCArray does not appear to favor any particular message sizem. The SP-2, on the other hand, clearly shows

that it favors a range of message sizes when the communication time becomes a minimum.

• The PCArray gives very low flat curves whenP=8 because the processors all reside on the same node. Com-

munication time is therefore extremely small.

• Increasing the number of processors has a bigger impact on the communication times for the PCArray than for

the SP-2. In particular, the PCArray showed a big increase when using two nodes (P=16) instead of one (P=8).

• Communication times increase linearly with increasing data sizen.

• Sorting requires a greater communication time than FFT. Recall that FFT has to send twice as many messages

because each element has real and imaginary parts. Hence, the communication times in Fig. 9 should be halved

to make a fair comparison with those for sorting in Fig. 8.

It is important to note that the above plots are consistent across machines and problems with different numbers of

processors and data sizes. In the following sections, we examine these results in more detail and attempt to explain the

reasons behind these observations.

Figure 8:Communication times for fine-grain bitonic sorting.

10 100 1000 10000 100000 10000000

1

2

3

4

5

6

7

8

9

10

10 100 1000 10000 100000 10000000

1

2

3

4

5

6

7

8

9

10
10 100 1000 10000 100000 10000000

1

2

3

4

5

6

7

8

9

10

10 100 1000 10000 100000 10000000

1

2

3

4

5

6

7

8

9

10

(a) PCArray P=8

C
om

m
un

ic
at

io
n

tim
e

(s
ec

)

Segment size m (integers) Segment size m (integers)

n=4M

n=1M

n=8M

n=2M

n=512K

(c) SP-2 P=8

(b) PCArray P=32 (d) SP-2 P=32

C
om

m
un

ic
at

io
n

tim
e

(s
ec

)

n=4M

n=1M

n=8M

n=2M

n=512K

n=16M

n=4M

n=32M

n=8M

n=2M

n=16M

n=4M

n=32M

n=8M

n=2M

10

5 Effects of Message Size across Different Platforms

The plots in Figs. 8 and 9 showed that the two machines gave different performance in terms of communication times

for the two problems. The SP-2 showed a relatively consistent behavior while the PCArray gave some fluctuations.

Table 1 lists the computation and communication times of the two machines for bitonic sorting withP=32,n=2M and

32M, ands ranging from 1 to 4K.

of
segments

s

Sorting:P=32,n=2M Sorting:P=32,n=32M

segment
sizem

PCArray SP2 segment
sizem

PCArray SP2

Comp Comm Comp Comm Comp Comm Comp Comm

4096 16 * * 1.248 5.962 256 * * 4.914 7.524
2048 32 * * 0.743 2.979 512 * * 4.409 5.108
1024 64 * * 0.496 1.555 1K * * 4.154 5.202
512 128 * * 0.371 0.837 2K * * 4.018 4.399
256 256 0.523 1.575 0.309 0.483 4K 9.004 6.843 3.944 4.505
128 512 0.496 1.024 0.276 0.331 8K 9.206 5.622 3.917 4.688
64 1K 0.519 0.531 0.261 0.335 16K 9.118 4.240 3.901 4.671
32 2K 0.529 0.398 0.254 0.284 32K 9.232 4.330 3.895 5.843
16 4K 0.524 0.449 0.251 0.277 64K 9.074 4.066 3.883 6.229
8 8K 0.492 0.413 0.247 0.279 128K 9.082 4.440 3.884 6.817
4 16K 0.515 0.370 0.244 0.323 256K 9.415 3.466 3.882 7.057
2 32K 0.495 0.409 0.246 0.435 512K 9.190 4.187 3.887 7.513
1 64K 0.508 0.404 0.244 0.481 1M 9.163 3.868 3.881 7.647

Table 1: Bitonic sorting withP=32. Entries with an asterisk indicate unable to obtain.

Figure 9:Communication times for FFT.

(a) PCArray P=8
C

om
m

un
ic

at
io

n
tim

e
(s

ec
)

Segment size m (points) Segment size m (points)

n=4M

n=1M

n=8M

n=2M

n=512K

(c) SP-2 P=8

(b) PCArray P=32 (d) SP-2 P=32

C
om

m
un

ic
at

io
n

tim
e

(s
ec

)
n=4M

n=1M

n=8M

n=2M

n=512K

n=16M

n=4M

n=32M

n=8M

n=2M

n=16M

n=4M

n=32M

n=8M

n=2M

10 100 1000 10000 100000 10000000

1

2

3

4

5

6

7

8

9

10

10 100 1000 10000 100000 10000000

1

2

3

4

5

6

7

8

9

10

10 100 1000 10000 100000 10000000

1

2

3

4

5

6

7

8

9

10
10 100 1000 10000 100000 10000000

1

2

3

4

5

6

7

8

9

10

11

The PCArray does not show a preference for any particular message sizem while the SP-2 clearly favors certain

message sizes. It is quite surprising that the PCArray shows little fluctuation in communication time. It should be noted

that Table 1 does not list PCArray times when the number of segmentss is larger than 256. For very small-sized mes-

sage, we were unable to run the problem instances on the PCArray. The reason we believe is due to the excessive

number of segments sent and received simultaneously. This is true for all problem sizes. This rather large number of

messages is probably clogging the message handling and the HiPPI interconnection.

If the PCArray communication times were extrapolated for the cases when we had several short messages and

were unable to execute, we believe that they would be worse than those for the SP2. The reasons are clear. First, each

node of the PCArray is an SMP consisting of eight processors. Within a node, these processors compete for the same

memory to send out messages. For the SP-2, each processor is autonomous with its own memory. Second, the PCArray

does not provide any hardware support for overlapping message handling and computation. The main processor han-

dles both computation and communication.

Computation times are relatively consistent for both machines except for a few instances on the SP-2 when the

message size is small. This is because the computation time includes the interrupt time for message handling. Some

overhead are not often properly measured due to the excessive number of small messages. For message sizes over 256

elements, the computation times are highly consistent, indicating that there is enough time to process the messages.

The computation times for the PCArray is consistently twice those for the SP-2 even though the PCArray has a

faster clock. This is likely due to the shared-memory nature where processors in each node compete for memory ac-

cess. Another contributing factor could be that R8000 is a four-issue superscalar processor while Power2 is a six-issue

superscalar processor. Table 2 compares the two machines for the FFT problem. Again, the observations that we made

for bitonic sorting essentially hold. A more in-depth comparison of the two problems is presented in the next section.

6 Communication Efficiency across Problems

When the two problems are cross-compared, bitonic sorting has a higher communication time than FFT. Figure 10

shows the performance of sorting and FFT on 64 processors of the SP-2 forn=4M and 64M. Plots show that sorting

requires more communication when the message size is small while FFT has higher communication when the message

of
segments

s

FFT: P=32,n=2M FFT: P=32,n=32M

segment
sizem

PCArray SP2 segment
sizem

PCArray SP2

Comp Comm Comp Comm Comp Comm Comp Comm

4096 16 * * 1.033 3.549 256 * * 13.640 4.973
2048 32 * * 0.897 1.804 512 * * 13.486 3.300
1024 64 * * 0.823 0.984 1K * * 13.568 3.280
512 128 0.774 2.865 0.796 0.550 2K 14.524 8.886 13.405 4.685
256 256 0.810 1.315 0.775 0.323 4K 14.340 8.023 13.523 4.592
128 512 0.786 0.581 0.761 0.228 8K 14.682 7.372 13.514 5.112
64 1K 0.809 0.710 0.759 0.229 16K 14.901 6.958 13.457 6.191
32 2K 0.795 0.633 0.751 0.311 32K 14.933 7.143 13.315 7.520
16 4K 0.796 0.533 0.757 0.338 64K 14.973 6.870 13.351 8.762
8 8K 0.860 0.476 0.758 0.377 128K 15.080 7.210 13.570 11.709
4 16K 0.894 0.438 0.747 0.527 256K 15.179 6.985 13.323 14.340
2 32K 0.817 0.520 0.774 0.729 512K 15.174 7.505 13.538 14.146
1 64K 0.806 0.563 0.750 0.835 1M 14.994 8.099 13.557 14.123

Table 2: FFT withP=32. Entries with an asterisk indicate unable to obtain.

12

size is large. The main reason is that the amount of messages sent and received is different for the two problems. For

sorting, each processor sends a message of sizem in each iteration. However, FFT sends twice the amount, i.e., 2m

elements in each iteration per processor because each data point has real and imaginary parts. Another reason the valley

for FFT is shifted to the right is the ratio of computation time to communication time. Table 3 shows some of the com-

putation and communication times for the two problems on the SP-2.

It is clear from Table 3 that the ratio of computation to communication is different for the two problems. The ratio

for sorting is below one whereas it is generally greater than one for FFT. This difference in ratio suggests that FFT has

more time to process the messages. The impact of communication for FFT is smallercompared to that for sorting,

thereby resulting in a higher overall performance. More details are presented in the following section.

7 Efficiency of Overlapping

Overlapping communication with computation is central to obtaining high performance on parallel machines. Sum-

marizing our findings in this study, we identify the efficiency of overlapping of the two machines. To measure the

overlapping efficiency, it is important to accurately define the basis on which the communication times are compared.

of
segments

s

SP-2:P=64,n=4M SP-2:P=64,n=64M

segment
sizem

Sorting FFT segment
sizem

Sorting FFT

Comp Comm Ratio Comp Comm Ratio Comp Comm Ratio Comp Comm Ratio

4096 16 0.565 8.356 0.068 1.310 4.222 0.310 256 6.125 11.285 0.543 17.047 5.744 2.968
2048 32 0.466 4.053 0.115 1.111 2.177 0.510 512 6.095 7.834 0.778 16.683 4.724 3.532
1024 64 0.431 2.159 0.200 1.025 1.163 0.881 1K 6.019 6.504 0.925 16.834 3.761 4.476
512 128 0.402 1.124 0.358 0.973 0.685 1.420 2K 5.985 5.356 1.117 16.823 5.691 2.956
256 256 0.394 0.666 0.592 0.977 0.373 2.619 4K 5.979 5.671 1.054 16.493 6.201 2.660
128 512 0.386 0.603 0.640 0.959 0.305 3.144 8K 5.970 6.488 0.920 16.599 6.312 2.630
64 1K 0.384 0.511 0.751 0.937 0.294 3.187 16K 5.997 6.910 0.868 16.767 6.708 2.500
32 2K 0.380 0.472 0.805 0.961 0.376 2.556 32K 6.005 7.561 0.794 16.548 8.912 1.857
16 4K 0.379 0.418 0.907 0.953 0.424 2.248 64K 5.961 6.737 0.885 16.814 8.684 1.936
8 8K 0.377 0.524 0.719 0.947 0.494 1.917 128K 5.968 8.563 0.697 16.602 10.572 1.570
4 16K 0.377 0.423 0.891 0.939 0.666 1.410 256K 5.974 7.771 0.769 16.608 14.195 1.170
2 32K 0.378 0.556 0.680 0.951 0.978 0.972 512K 5.990 9.863 0.607 16.813 16.247 1.035
1 64K 0.376 0.592 0.635 0.934 0.981 0.952 1M 5.968 9.157 0.652 16.591 16.787 0.988

Table 3: Comparison between sorting and FFT on the SP-2 withP=64.

Figure 10: Effects of message size on communication times across problems.

(b) FFT on SP-2 P=64

10 100 1000 10000 100000 10000000

2

4

6

8

10

12

14

16

18

20

10 100 1000 10000 100000 10000000

2

4

6

8

10

12

14

16

18

20

(a) Sorting on SP-2 P=64
C

om
m

un
ic

at
io

n
tim

e
(s

ec
)

Message size m (integers) Message size m (points)

n=32M

n=8M

n=64M

n=16M

n=4M

n=32M

n=8M

n=64M

n=16M

n=4M

13

When only one segment is used, i.e.,s=1, it is not possible to overlap computation with communication since compu-

tation can begin only after the communication of the entire segment is complete. LetTcomm,s be the communication

time forssegments. We define the efficiency of overlapping asE = (Tcomm,1− Tcomm,s) / Tcomm,1. Figure 11 identifies

the capabilities of overlapping for the two machines for sorting. The SP-2 shows a much higher overlapping than the

PCArray.

Figure 11 indicates that the PCArray exhibits an overlapping efficiency of merely 10%. The SP-2, however, shows

an efficiency of over 40% for message sizes between 2K and 16K integers. The PCArray shows little overlapping be-

cause the machine does not provide any hardware that can handle messages independent of the main processor R8000.

Every message sent and received uses the main processor cycles. The SP-2, on the other hand, provides two hardware

support for handling communication: the i860 communication co-processor and the 4KB bidirectional buffer. Figure

11(b) clearly indicates that the buffer is effectively utilized when the message size is about 4KB.

When the message size is too small or too large, the buffer is no longer effective since other factors such as over-

head and barrier synchronization time then begin to become important. When the message size is too small, the

overhead to execute instructions for message preparation becomes the dominant factor. This overhead is a fixed cost

and cannot be overlapped with computation since the instructions must be executed to prepare messages, regardless

of the message size. When the message size is too large, the overlapping efficiency is drastically reduced since the

4KB message buffer is too small. While there is certainly very little overhead, this large-sized messages will occupy

the communication channels longer to complete sending/receiving each message, resulting in clogging the bandwidth.

The ratio of computation to communication is also a key factor in determining the overlapping efficiency. If hard-

ware support is provided and communication takes place while computation proceeds, the computation time must be

larger than the communication time to effectively mask the communication. To compare the efficiency in terms of the

ratio of computation to communication, we have plotted the overlapping efficiency for FFT in Fig. 12. We find that

the efficiency of the SP-2 has increased to 80% while that for the PCArray is still low, approximately 20%. Recall from

Table 3 that the ratio of computation to communication times for the FFT is generally more than twice that for sorting

on both machines. This is directly reflected in the overlapping efficiency of FFT compared to sorting.

The overlapping efficiency for the PCArray in Fig. 12(a) shows unexpected behavior for message sizes 1K and

2K. The dotted circle of Figure 12(a) show a very high overlapping efficiency of 60%. We believe these spikes are due

Figure 11: Efficiency of overlapping for bitonic sorting withP=32.

10 100 1000 10000 100000 10000000

20

40

60

80

100

10 100 1000 10000 100000 10000000

20

40

60

80

100

(b) Sorting on SP-2 P=32(a) Sorting on PCArray P=32

O
ve

rla
pp

in
g

ef
fic

ie
nc

y
(%

)

Message size m (integers) Message size m (integers)

n=16M

n=4M

n=32M

n=8M

n=2M

n=16M

n=4M

n=32M

n=8M

n=2M

14

to errors in measurement and do not reflect true performance. Measuring the communication time is indeed not

straightforward due to many practical difficulties. The right hand side of Figure 12(a) should be considered the true

overlapping efficiency for the PCArray since it is consistent with the results for sorting.

When the number of processors is increased to 64 on the SP-2, the overlapping efficiency remains consistent for

both sorting and FFT as depicted in Fig. 13. According to our experimental results, the overlapping efficiency of sort-

ing is always about half that for FFT, regardless of the number of processors. However, both sorting and FFT show

little change when the number of processors is increased from 32 to 64. (Compare Figs. 11(b) and 13(a) for sorting,

Figs. 12(b) and 13(b) for FFT.) This consistency in overlapping efficiency indicates that the number of processors is

not the main factor contributing to communication overlapping.

For large numbers of processors, the synchronization and overhead times become increasingly important in de-

ciding the overlapping efficiency since the synchronization cost increases with the number of processors. Barrier

synchronization was used at the end of each iteration to synchronize processors and measure various timings. This syn-

chronization cost is a fixed cost and cannot be overlapped with computation, regardless of the message size.

Experimental results indeed indicate that when the number of processors is 64, the synchronization cost alone is more

than twice the latency.

Figure 12: Efficiency of overlapping for FFT withP=32. The dotted circle indicates that there are some errors in
measurement possibly due to resident processes running on the machine.

10 100 1000 10000 100000 10000000

20

40

60

80

100

10 100 1000 10000 100000 10000000

20

40

60

80

100

(b) FFT on SP-2 P=32(a) FFT on PCArray P=32
O

ve
rla

pp
in

g
ef

fic
ie

nc
y

(%
)

Message size m (points) Message size m (points)

n=16M

n=4M

n=32M

n=8M

n=2M

n=16M

n=4M

n=32M

n=8M

n=2M

Figure 13: Comparison of overlapping efficiency between sorting and FFT on the SP-2 withP=64.

10 100 1000 10000 100000 10000000

20

40

60

80

100

10 100 1000 10000 100000 10000000

20

40

60

80

100

(b) FFT on SP-2 P=64(a) Sorting on SP-2 P=64

O
ve

rla
pp

in
g

ef
fic

ie
nc

y
(%

)

Message size m (integers) Message size m (points)

n=32M

n=8M

n=64M

n=16M

n=4M

15

8 Conclusions

Programming parallel machines involves numerous practical concerns. This paper has investigated the interplay be-

tween problems and communication capabilities of parallel machines. To demonstrate the practicality of our study, we

have fixed the parallel programming paradigm to Message Passing Interface. Two machines were selected for exper-

iments: an IBM SP-2 distributed-memory multiprocessor and an SGI PowerCHALLENGEarray (PCArray) symmetric

multiprocessor. Two benchmark problems, bitonic sorting and Fast Fourier Transform, have been selected for exper-

iments. Communication-efficient algorithms are developed to exploit the overlapping capabilities of the machines.

Programs have been written in MPI for portability and identical codes are used for both machines. Various data sizes

and message sizes are used to test the machines’ communication capabilities.

Experimental results have indicated that the communication performance of the multiprocessors are consistent

with the size of messages. The PCArray is not highly sensitive to message size but yielded low communication over-

lapping. In fact, it yielded only 20% overlapping of communication with computation for FFT. The main reason is

because SGI provides no hardware support for message passing. Our results and analysis are based only on up to 32

processors of the PCArray. It is not clear whether similar performance will be obtained for 64 processors. The SP-2,

on the other hand, has shown sensitivity to message size but yielded high overlapping of communication with compu-

tation. It clearly favored a certain range of message sizes. An overlapping efficiency of up to 80% was obtained for

FFT. This high value can be attributed to the communication co-processor and its 4KB message buffer.

When the two test problems are cross-compared, sorting required a greater communication time than FFT. The

reason is because the ratio of computation time to communication time for sorting is much lower than that for FFT.

This low computation time for sorting has been found to be insufficient to mask some latency by the communication

co-processor. Another reason is that FFT has to send twice as many messages because each element has real and imag-

inary parts. Note that the FFT communication times shown in the paper should be halved for each message size since

they are based on real and imaginary parts.

Increasing the number of processors has a bigger impact on the communication times for the PCArray than for the

SP-2. In particular, the PCArray showed a big increase when using two nodes (16 processors) instead of one (8 pro-

cessors). This is due to the fact the one node does not involve any communication since it is a shared-memory machine

by itself. However, when two nodes are used, the communication time drastically increased because of communication

through HiPPI switches. The communication behavior of the SP-2 has been shown to be consistent as the number of

processors was increased to 64. We found that the overhead and synchronization times become significantwhich limit

the overlapping efficiency for large number of processors. We are currently working on Cray T3E to further compare

the communication performance with the SP-2 and the PCArray.

References

1. T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias, and M. Snir, “SP-2 System Architecture”, in
IBM Systems JournalVol. 34, No. 2, 1995

2. A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman, “LogGP: Incorporating Long Messages into the
LogP Model - One step closer towards a realistic model for parallel computation,” inProc. of the 7th ACM Sym-
posium on Parallel Algorithms and Architectures, Santa Barbara, CA, July 1995, pp. 95-105.

3. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith, “The Tera computer sys-
tem,” In Proceedings of ACM International Conference on Supercomputing, Amsterdam, Netherlands, June
1990, ACM, pp.1-6

16

4. K. Batcher, “Sorting Networks and Their Applications,” in Proc. the AFIPS Spring Joint Computer Conference
32, Reston, VA, 1968, pp.307-314.

5. D. Cann, The Optimizing SISAL Compiler: Version 12.0, Lawrence Livermore National Laboratory, 1992.

6. D. Culler, R.M. Karp, D.A. Patterson, A. Sahay, E.E. Schauser, E. Santos, R. Subramonian, and T. von Eicken,
“LogP: Towards a Realistic Model of Parallel Computation,” in Proc. of the 4th ACM Symposium on Principles
and Practice of Parallel Programming, San Diego, CA, May 1993.

7. J.T. Feo, Cann, D.C., and Oldehoeft, R.R., “A Report on the SISAL Language Project,”Journal of Parallel and
Distributed Computing10, December 1990, pp.349-365.

8. G. Gao, L. Bic and J-L. Gaudiot (Eds.) Advanced Topic in Dataflow Computing and Multithreading, IEEE
Computer society press, 1995

9. High Performance Fortran Forum, High Performance Fortran Language Specification version 2.0, Center for
Research on Parallel Computation, Rice University, Houston, TX, November 1996.

10. R. Iannucci, G. Gao, R. Halstead, and B. Smith (Eds.), Multithreaded Computer Architecture, Kluwer Publish-
ers, Norwell, MA 1994

11. K. Kennedy and U. Kremer, Automatic Data Layout for High Performance Fortran, InProceedings of Super-
computing’95, San Diego, CA, December 1995.

12. K. Kennedy, N. Nedeljkovic, and A. Sethi, Communication Generation for Cyclic(k) Distributions. Languages,
Compilers and Run-Time Systems for Scalable Computers, Kluwer Academic Publishers, May, 1995.

13. Y. Kodama, H. Sakane, M. Sato, H. Yamana, S. Sakai, and Y. Yamaguchi, “The EM-X Parallel Computer: Ar-
chitecture and Basic Performance,” inProceedings of ACM International Symposium on Computer Architec-
ture, Santa Margherita Ligure, Italy, June 1995, pp.14-23.

14. J. R. McGraw, Skedzielewski, S.K., Allan, S.J., Oldehoeft, R.R., Glauert, J., Kirkham, C., Noyce, W., and Th-
omas, R., “SISAL: Streams and Iteration in a Single Assignment Language: Reference Manual version 1.2,”
Manual M-146, Rev. 1, Lawrence Livermore Laboratory, Livermore, CA, 1985.

15. Message Passing Interface Forum, MPI: Message-Passing Interface Standard, Version 1.1, Technical Report,
University of Tennessee, Knoxville, TN, June 1995.

16. R. Nikhil, “Id (Version 90.1) Reference Manual,” MIT CSG Memo 284-2, July 1991.

17. R. Nikhil, G. Papadopolous, and Arvind, “*T: A Multithreaded Massively Parallel Architecture,” inProceed-
ings of ACM International Symposium on Computer Architecture, Gold Coast, Australia, May 1992, pp.156-
167.

18. G. Papadopolous, An Implementation of General Purpose Dataflow Multiprocessor, MIT Press, Cambridge,
MA, 1991.

19. B. J. Smith, “A Pipelined, Shared Resource MIMD Computer,” inProceedings of International Conference on
Parallel Processing, 1978, pp.6-8.

20. A. Sohn, M. Sato, N. Yoo, and J-L Gaudiot, Data and Workload Distribution in a Multithreaded Architecture,
Journal of Parallel and Distributed Computing, December 1996.

21. C. B. Stunkel, D. G. Shea, B. Abali, M. Atkins, C. A. Bender, D. G. Grice, P. H. Hochschild, D. J. Joseph, B.
J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao, and P. R. Varker, “The SP-2 Communication Subsystem,”
Technical Report, IBM T. J. Watson Research Center, August 1994.

22. L. G. Valiant, “A Bridging Model for Parallel Computation,”Communications of the ACM 33 (8), August 1990,
pp.103-111.

